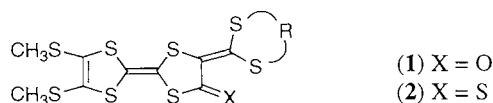


Tetrathiafulvaleno-quinonemethides and -thioquinonemethides

Masaki Iwamatsu, Tsuyoshi Kominami, Kazumasa Ueda, Toyonari Sugimoto,* Hideo Fujita,† and Tomohiro Adachi††

Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Osaka 599-8570

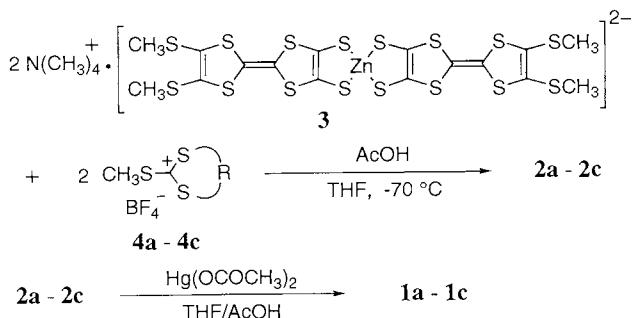

†Faculty of Human Integrated Studies, Kyoto University, Yoshida, Kyoto 606-8501

††Department of Chemistry, Faculty of Integrated Arts and Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531

(Received December 25, 1998; CL-980955)

Novel donor/acceptor-type tetrathiafulvalenes, tetrathiafulvaleno-quinonemethide and -thioquinonemethide were synthesized, which are expected as new π donor molecules bearing d local spin, because they can capture several magnetic metal ions through binding with the carbonyl oxygen or thiocarbonyl sulfur atom.

The synthesis of organic complexes involving both conducting π electron and local d spin is of current interest, since novel electrical conducting and magnetic properties, especially superconductivity and ferromagnetism with much more increased critical temperatures might be produced, if the conducting π electron and local d spin can significantly interact with each other.¹ There are so far known several π/d systems of copper² and cobalt-phthalocyanines,³ copper dicyanoquinodiimines,⁴ and bis(ethylenedithio)-tetrathiafulvalene and -tetraselenafulvalene radical cation salts with copper or iron ion.⁵⁻⁸ The degree of π/d interaction is different by each complex, and novel electrical conducting and magnetic properties have emerged from some complexes exhibiting significant π/d interaction. Now, we report the synthesis and some physicochemical properties of two donor/acceptor-type tetrathiafulvalenes, bis(methylthio)tetrathiafulvaleno-quinonemethide (**1**) and -thioquinonemethide (**2**), which are expected to capture magnetic metal ions through binding with the carbonyl oxygen or thiocarbonyl sulfur atom. It is possible that the contribution of a polar structure to the ground



(a) R = $-\text{CH}_2\text{CH}_2-$; (b) R = $-\text{CH}=\text{CH}-$; (c) R = 4-methylbenzo

states of **1** and **2** furthermore increases by binding of a metal ion at the carbonyl oxygen or thiocarbonyl sulfur atom. The positive charge residing in the 1,3-dithiolane or 1,3-dithiole ring might serve as an oxidizing agent of the tetrathiafulvalene ring, eventually bringing much expectation of a new π/d system for some complexes of **1** or **2** with magnetic metal ions.

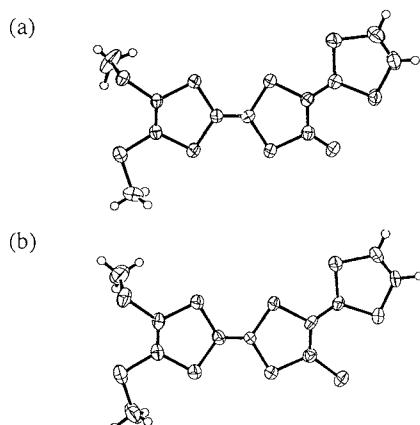
As is shown in Scheme 1, bis(tetramethylammonium) bis(2,3-dimethylthiotetrathiafulvalenyl-6,7-dithiolato) zinc complex (**3**)⁹ was reacted with 2 equiv. of 2-methylthio-1,3-dithiolium (**4a**), -1,3-dithiolium (**4b**) or -1,3-(4-methylbenzo)dithiolium tetrafluoroborate (**4c**)^{10, 11} in THF containing 1% (v/v) acetic acid at -70°C under argon. After separation of the reaction mixture by column chromatography on silica gel and recrystallization from CS_2/MeOH , **2a** - **2c** were isolated as black crystals in 35, 34 and 37% yields, respectively. When **2a** - **2c** were reacted with 1 equiv. of mercury(II) acetate in THF/AcOH (1:1 v/v) at 20°C , **1a** - **1c** were obtained as red crystals in >80% yield by recrystallization from CS_2/MeOH . It is most conceivable

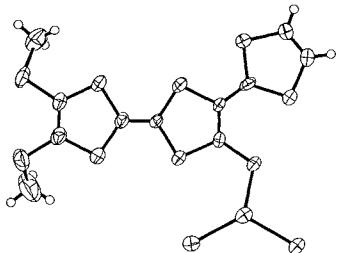
Scheme 1.

as a plausible formation scheme of **2** that the thiolate anion of one tetrathiafulvalenylidithiolato group in **3** attacks the carbon atom at the 2-position of **4**, and subsequently the vinylthiolate carbon anion again attacks the 2-carbon atom of **4** accompanied with elimination of the methylthio group, followed by expulsion of sulfur atom from the episulfide intermediate to afford the final product.

The molecular structures¹² of **1b** and **2b** are shown in Figure 1. For both the molecules the tetrathiafulvaleno-quinone (or -thioquinone)methide skeleton is almost planar. The bond distances of carbonyl- and thiocarbonyl-1,3-dithiole-2-ylidene groups are as follows: C=O (1.22), C-C (1.43) and C=C (1.35 Å) for **1b**, and C=S (1.66), C-C (1.39) and C=C (1.38 Å) for **2b**. The observed values are very close to those of normal α, β -unsaturated ketones¹³ and thioketones¹⁴, suggesting that the degree of polarization of carbonyl- and thiocarbonyl-1,3-dithiole-2-ylidene groups in **1b** and **2b** is as usual and almost not influenced by attaching the tetrathiafulvaleno group.

The electron-donating properties of **1** and **2** were investigated




Figure 1. The molecular structures of (a) **1b** and (b) **2b**.

by using cyclic voltammetry, and compared with that of tetrakis(methylthio)tetrathiafulvalene (**5**). The measurement was carried out at 0 °C in DMF containing 0.1 M NEt₄ClO₄ as a supporting electrolyte by using Pt wires as both working and counter electrodes. The cyclic voltammograms of **1** and **2** were composed of two pairs of reversible waves, which correspond to one- and two-electron transfers, respectively. The first (E¹) and second potentials (E²) are summarized in Table 1. The E¹ values are +0.62 - +0.66 V vs. Ag/AgCl for **1a** - **1c**, and +0.59 - +0.64 V for **2a** - **2c**. When the E¹ values are compared between **1** and **2** bearing the same electron-donating group of 1,3-dithiolane-, 1,3-dithiole- or 1,3-(4-methylbenzo)dithiole-2-ylidene, slightly lower values are obtained for **2** than **1**. However, both the E¹ values are higher by ca. 0.2 V than that of **5** (+0.49 V), indicating that **1** and **2** can still serve as π donor molecules, although their electron-donating ability is inferior to that of **5**.

Table 1. Redox potentials of **1a** - **1c** and **2a** - **2c** in DMF at 0 °C

Donor	E ¹ ^a	E ² ^a
1a	+ 0.62	+ 0.78
1b	+ 0.62	+ 0.85
1c	+ 0.66	+ 0.85
2a	+ 0.59	+ 0.76
2b	+ 0.61	+ 0.77
2c	+ 0.64	+ 0.80
5	+ 0.49	+ 0.69

^aV vs. Ag/AgCl.

Figure 2. The molecular structure of **6**.

For a preliminary experiment, **2b** was treated with 1 equiv. of CuBr₂ in CH₃CN/CS₂ to afford the **2b**/CuBr₂ (1:1) complex (**6**) quantitatively. As is obvious from the molecular structure of **6**¹² (see Figure 2), the Cu(II) ion is bound to the thiocarbonyl sulfur atom. The synthesis of the CuBr₂ complexes with the other **1** and **2** molecules than **2b**, and their electrical conducting and

magnetic properties are now under investigation.

References and Notes

- 1 P. Day, *Philos. Trans. R. Soc. London*, **A314**, 145 (1985).
- 2 C. J. Schramm, R. P. Scaringe, D. R. Stojacobic, B. M. Hoffman, J. A. Ibers, and T. J. Marks, *J. Am. Chem. Soc.*, **102**, 6702 (1980).
- 3 K. Yakushi, H. Yamakado, T. Ida, and A. Ugawa, *Solid State Commun.*, **78**, 919 (1991).
- 4 A. Aumüller, P. Erk, G. Klebe, S. Hünig, J. U. von Schutz, and H.-P. Werner, *Angew. Chem.*, **98**, 759 (1986); *Angew. Chem. Int. Ed. Engl.*, **25**, 740 (1986).
- 5 P. Day, M. Kurmoo, T. Mallah, I. R. Marsden, M. L. Allan, R. H. Friend, F. L. Pratt, W. Hayes, D. Chasseau, J. Gaultier, G. Bravic, and L. Ducasse, *J. Am. Chem. Soc.*, **114**, 10722 (1992).
- 6 T. Enoki, J. Yamaura, N. Sugiyasu, K. Suzuki, and G. Saito, *Mol. Cryst. Liq. Cryst.*, **233**, 325 (1993).
- 7 M. Kurmoo, A. W. Graham, P. Day, S. J. Coles, M. B. Hursthouse, Caulfield, J. Singleton, L. Ducasse, and P. Guionneau, *J. Am. Chem. Soc.*, **107**, 6951 (1985).
- 8 A. Kobayashi, T. Udagawa, H. Tomita, T. Naito, and H. Kobayashi, *Chem. Lett.*, **1993**, 2179.
- 9 K. Ueda, M. Yamanoha, T. Sugimoto, H. Fujita, A. Ugawa, K. Yakushi, and K. Kano, *Chem. Lett.*, **1997**, 461.
- 10 E. Klingsberg, *J. Am. Chem. Soc.*, **86**, 5290 (1964).
- 11 F. Wudl and M. L. Kaplan, *J. Org. Chem.*, **24**, 3608 (1974).
- 12 Crystal data for **1b**: C₁₁H₈S₉, $M = 428.72$, monoclinic, space group $P2_1/n$, $a = 5.138(4)$, $b = 28.170(4)$, $c = 11.436(2)$ Å, $\beta = 95.80(3)$ °, $Z = 4$, $V = 1646(1)$ Å³, $D_c = 1.729$ g/cm³. $R = 0.050$ and $R_w = 0.102$ for 1601 observed reflections with $I > 2\sigma(I)$. Crystal data for **2b**: C₁₁H₈OS₈, $M = 412.66$, triclinic, space group $P\bar{1}$, $a = 8.427(2)$, $b = 13.408(3)$, $c = 7.482(2)$ Å, $\alpha = 92.26(2)$, $\beta = 104.33(2)$, $\gamma = 81.89(1)$ °, $Z = 2$, $V = 810.9(3)$ Å³, $D_c = 1.690$ g/cm³. $R = 0.054$ and $R_w = 0.064$ for 2120 observed reflections with $I > 2\sigma(I)$. Crystal data for **6**•CS₂•H₂O: C₁₁H₈S₉CuBr₂•CS₂•H₂O, $M = 746.30$, triclinic, space group $P\bar{1}$, $a = 11.628(4)$, $b = 12.719(4)$, $c = 8.479(2)$ Å, $\alpha = 104.79(2)$, $\beta = 106.80(2)$, $\gamma = 101.32(3)$ °, $Z = 2$, $V = 1110.2(7)$ Å³, $D_c = 2.094$ g/cm³. $R = 0.049$ and $R_w = 0.084$ for 2256 observed reflections with $I > 2\sigma(I)$. The measurements were made by Rigaku AFC7R diffractometer with graphite monochromated Cu- $K\alpha$ radiation ($\lambda = 1.54178$ Å) for **1b** and **2b**, and by Rigaku AFC5R diffractometer with graphite monochromated Mo- $K\alpha$ radiation ($\lambda = 0.71069$ Å) for **6**•CS₂•H₂O.
- 13 K. P. Huber and G. Herzberg, "Molecular Spectra and Molecular Structure IV", Van Nostrand Reinhold Co. London (1979).
- 14 G. A. Jeffrey and R. Shiono, *Acta Cryst.*, **12**, 447 (1959).